大发快三彩票-大发快三官网 网站地图 Tag标签
大发快三彩票-大发快三官网

专注家庭装潢装饰、室内设计、别墅装修

预约免费出装修设计效果图10年老店值得信赖

家庭装修热线

021-54948889

新闻资讯

您的当前位置 : 主页 > 石油 >

中邦大科学装备“人制太阳”实行1亿℃高温或庖

  

中邦大科学装备“人制太阳”实行1亿℃高温或庖

中邦大科学装备“人制太阳”实行1亿℃高温或庖

中邦大科学装备“人制太阳”实行1亿℃高温或庖

中邦大科学装备“人制太阳”实行1亿℃高温或庖

  也就是从这个时候开始,世界可控核聚变研究变得公开,开始重视国际交流,世界各国进入一种良性竞争的状态,即各国都开始在可控核聚变方面努力,并不断公开自己的最新研究成果,一方面让各国同行少走弯路,另一方面凸显本国科研实力。 解决上亿度和零下269度,很多技术必须要用在一起。首先,真正的上亿度的高温要用磁场把它悬浮起来,就是超导,上面全部是线圈。悬浮在中间以后,等离子那里有个火球——蜘蛛侠那个球,温度越高它越要到处跑。比如太阳,因为温度高,所以太阳黑子来了。跑的过程中一定要想办法控制住,让它一定悬浮在中间,不能够上下跑。在不乱跑的情况下,才不会把材料烧坏。 从能源的需求来讲,中国比任何一个国家都需要能源。尽管我们相比来说很穷,但是我国几任国家领导人都觉得这件事中国人一定要做。90年代初我们提出这个想法,在全世界率先做一个全超导的托卡马克叫东方超环,能够长时间地做到上亿度,比太阳心部的温度还要高五六倍! 国外使用超导线圈的托卡马克装置一共有三台,分别来自法国、俄罗斯和日本。但是这三台装置都只有水平线圈是超导的,而垂直线圈依然是常规线圈。这其中固然有成本的问题,但技术问题还是主要原因。 此后,只需要持续的向反应体中供应氘,可控核聚变便可以一直持续下去,并源源不断地产生完全清洁的、高效的聚变能。 磁场!这是科学家们异口同声的答案。利用磁场约束住上亿度的等离子体,让这团等离子体“悬浮”于磁场之中,这样,就不需要耐高温容器了。在这团受约束的超高温等离子体中源源不断地注入氚和氘,人类就可以实现可控核聚变了! 原始的托卡马克装置有着其天然的缺点,因为托卡马克装置越是接近实用,需要的磁场就越大,而磁场越大,需要的电流也越大,这简直就是水和面问题的翻版。 随着科技发展,科学家们认识到,氢的两种同位素,氘(dāo)和氚(chuān)之间的聚变反应,是最容易实现的聚变形势。这种核聚变已经在太阳上存在了数十亿年,在研制成功不久,人类也实现了氘和氚之间的核聚变,这便是氢弹。 当时这个装置还是比较好的。为什么?因为在那时候,一个卢布相当于3.6美元,我们花了一年半的时间把它全部拆掉,又花了两年的时间把它装起来,在这上面做了大量的实验,应该说还不错。其他国家在这个装置上面都只能做几秒钟高温,而我们最多能做到60秒钟一千万度,因此成为了全国的十大新闻。 它的好处在哪里?首先它没有高放的废料,而我们现在用的裂变电站都是化石燃料,尤其是235,238。一旦发生事故,就会有长达上百万年的放射性废料。 东方超环在2007年建成启动后,一举成为可控核聚变国际合作项目(ITER)最重要和最先进的试验装置,此后,各国科学家纷纷来我国开始科学试验。这也使得我国成为可控核聚变国际合作项目(ITER)的领导者。 相对其他国家的可控核聚变研究都是在氢弹研制成功之后,我国可控核聚变研究起步很早,始于1955年。这一年,我国著名核物理学家李正武刚回国不久,在他的建议下,我国开始了可控核聚变的研究。 我国做到了输出的能量和输入的能量之比等于1.25,即已经有了净输入。这是什么意思?就是说从科学上已经验证了这是可行的,但是工程上可不可行还不知道。 首先它要形成的磁笼一共有18段,像橘子瓣一样。这是什么概念?波音747重量370吨,这一个线吨左右;价钱也是差不多的,波音747是2.6亿美元,这大概是2.8亿欧元。 所以现在要做的就是产生比地球高上万倍的磁场,让这团气体悬浮起来。用的燃料是什么?是海水里面氢的同位素——氘和氚。海水里面的氘有多少呢?它可以让一千个电站使用上百亿年,也就是说该资源是无限的。如果用爱因斯坦的公式计算的话,一杯水里面产生的氘和氚是E=mc2,相当于300公升汽油。 1982年我到了合肥的一座非常偏僻的岛上——董铺岛,一做就是34年。非常有幸,作为一个中国的科学家,每一任领导都到过现场,这给了我们很高的鼓励,也包括俄罗斯的总理,他们都说过同样一句话——中国需要能源,中国一定要在人类实现这种聚变的路上起到不可取代的作用。 什么叫可控的?就是跟人没有关系。科学就是可重复,不管是谁去做都是同样的结果,跟仪器没有关系。只要是一样的仪器,美国的人造太阳、欧洲的人造太阳还有日本的人造太阳,结果都是一样地可重复,这就是科学。 这就是聚变电站的原理。首先你要有磁笼子,用它形成一个等离子体,再用非常高的温度把它加热到上亿度,加热到上亿度以后就会产生氦和中子,中子就跑到包层材料里进行加热。加热以后,我们通过水把它转换成蒸汽,再通过蒸汽把电给发出去。这就是一个简单的聚变发电原理。 1985年,美、苏、日和欧共体(欧盟前身)开始筹划建立可控核聚变国际合作项目(ITER),以便这些老牌发达国家能够掌握人类未来能源形势,继续保持技术优势。 50年前,人类就有个梦想——希望实现人造太阳。上大学的时候,我也有这个梦想。我希望在有生之年能够做出人造太阳,让没有被文明照亮的地方被聚变能点亮。 可控核聚变所需要的燃料氘大量存在于自然界的普通水中(所谓重水即是氘水,重水提取自普通水中),生成燃料氚的锂在自然界中也分布广泛。核聚变反应不会产生有害放射性物质,不会造成环境污染,是人类最理想的能源形势。 大家都知道太阳,但什么是人造太阳?看过钢铁侠的人都知道,钢铁侠里面有一个人造太阳叫托卡马克,像一个磁线圈一样。如果把气体加热到上亿度,它就会发生聚变,可以像太阳一样发出巨大的能量。 除此之外,能量的损失靠传导、对流和辐射。最小辐射损失就是全部用真空,用五层线度的结合。 托卡马克磁约束方案自发布以来,成为了世界可控核聚变研究最热门的方向。迄今为止,世界各国共建造了上百座托卡马克装置。1970年末,我国的托卡马克装置HL-1,也就是俗称的“中国环流器一号”正式立项,1984年完成装置工程联调,1985年正式投入物理实验研究。 这件事真是难,难于上青天。为什么?因为美国人在60年代已经上了天、登了月,但是他们到现在也没有做出一个能够真正发电的人造太阳。 尽管聚变能离我们还是很遥远,但是通过国际合作,中间产生的过程和技术都能够非常好地用在国民经济上。 用这些非常复杂的仪器把上亿度的东西放在中间持续地加热,讲讲很容易,但实际操作非常难。 1986年,中国环流器一号的初步实验结果在日本京都国际原子能机构主持的国际聚变能学术会议上公布,大会在总结报告中表示了对中国同行的祝贺,受到了国际聚变界的普遍关注。这也侧面证明,这一时期,我国可控核聚变的研究已处于世界领先水平。1992年中国环流器一号关闭后,改进的中国环流器新一号于1994年投入试验运行,直到2001年关闭。接着,中国环流器二号又投入了运行。这些装置的建成和研究,让我国渐渐成为世界上可控核聚变研究的先进国家。 1959年,我国新建了核聚变研究装置,取名“小龙”,新的装置属于脉冲压缩/磁镜装置,这个装置效果较好,一直使用至1969年才关闭。 东方超环是集我国五十多年可控核聚变研究之大成的装置,该装置自建成以来,就不断开创人类可控核聚变研究的新高度。 聚变最大的问题就是离实现还很遥远,没有像计算机这样家喻户晓。但可以说,聚变在过去50年中已经发展得非常非常快了。几个代表性的成就是在一些发达国家,像美国、欧洲和日本,他们在一些大装置上都同时实现了可控的核聚变。 而世界上第一台全超导托卡马克装置是由我国科学家独立设计和建造的东方超环(EAST),俗称“人造太阳”,它是世界上最早的水平和垂直线圈均为超导线圈的托卡马克装置。不仅如此,东方超环还第一次采用了非圆形垂直截面,在不增加环形直径的前提下增加了反应体的体积;第一次采用了液氦无损耗的超导体系,实现了液氦这种昂贵冷却剂的高效利用;同时还是世界上第一个拥有主动冷却结构的托卡马克装置。 那么怎样能够实现人造太阳?要把上亿度的温度装到任何容器上都会顷刻之间烟消云灭。于是科学家就想了一个办法:把一团火球——上亿度的等离子体,用磁的方法把它悬浮起来,跟周边的任何容器材料不接触,这个时候就可以把它加热、控制,进而造出太阳。它的模样就像你们吃的甜圈圈。 一个一百万千瓦的电站,上海一年大约只需要两个。聚变电站需要多少东西呢?一年一个电站只需要一百公斤的重水和锂;如果换成煤电站的话,一个一百万千瓦的电站需要50万吨煤;如果是核电站的线吨。 从上世纪五十年代开始直到今天,科学家们在可控核聚变方面的研究的最主要工作,就是寻找一种可靠的,可以约束超高温等离子体的装置。 但是,可控核聚变发生的条件极为苛刻。要发生可控核聚变,必须将反应堆维持在上亿度的高温,只有在此条件下,注入的氚和氘的布朗运动才会变得超级剧烈,或者说是狂暴,此时氘和氚的原子核才会碰撞在一起,发生核聚变,产生一个氦核和一个中子,同时放出巨大的能量。 ITER使得国内的企业发展得非常好,已经形成了全世界最先进的技术,规模和产量也是最大的。西安的有色金属研究院、西部超导公司现在一年可以生产150吨;除此之外,国内的核磁共振、GE的所有线几乎超过一半都是ITER的材料在供应;还有我国航母的歼15的起落架,飞机落地的一刹那冲击力非常大,所以对材料的要求非常之高,用ITER上面的材料终于解决了航母的起落架的问题。这是第一个例子。 它导致事故的概率非常小,只有同时碰到地震和海啸才有可能发生,或许上万年才会出现一次。但现实中最有可能发生的不是这个,而是——可能开个飞机就把它炸了,但聚变电站不怕,因为它聚变的产物就是氦气,只要一停机就没有了。 超高温等离子体被约束在磁场中,维持可控核聚变发生的超高温条件,接着,少量的氘和氚被作为点火燃料注入至反应体中,发生核聚变反应。核聚变反应生成氦核和中子,并放出聚变能。聚变能大部分被反应堆周围的导热装置吸收并进入能量转换和传输装置,转变为电能,少量的聚变能将继续在反应体中,维持核聚变反应的超高温状态。 聚变的产物是什么?就是能源中子和氦气。氦气是非常清洁的,当年习总书记实地参观时就问:为什么说聚变是固有的安全性?那时候距离福岛发生核事故刚刚一个月。 日前,中国科学院等离子研究所宣布,国家大科学装置——世界上第一个全超导托卡马克(EAST)东方超环再传捷报:实现了稳定的101.2秒稳态长脉冲高约束等离子体运行(相当于稳定“燃烧”了上百秒),创造了新的世界纪录。这是我国科学家集几十年研究心血,取得的可控核聚变研究的最新成就,更是迄今为止,人类可控核聚变研究最先进的成果。 我们国家在参加ITER之前是生产短样的。绕这么一个线圈,里面要将近十万米导线吨。我们国家在参加这个国际合作之前,四十年之间只产生了36公斤短样。 人类在这个方向一共做了50年,进展还是挺大的。我们知道,计算机每1.8年CPU的速度翻一倍,而聚变的发展速度基本上能做到跟它一样快,甚至比它快两个月,谁能解说一下打扮面料的常识。差不多16~17个月左右的时间,它的综合参数也能够翻一倍。 如果是现实版的托卡马克的话,中国有两个人造太阳,一个在合肥,另一个在成都,分别叫合肥超环和中国的环流器1号。 这一时期,我国的可控核聚变研究的指导思想是“小规模多途径探索”,这一阶段共建造了9个可控核聚变研究装置。但是当时由于国内生产技术落后、对外封闭、科技信息交流不畅等客观因素,这些装置在没有“约束场”绕组的情况下,均没有获得可供物理研究的等离子体。不过,这些研究还是给我国培养了一批可控核聚变的研究人才,也取得了许多研究成果,为我国后续的可控核聚变研究奠定了基础。 上世纪三十年代初,核聚变原理就被科学家们提出,该原理简单却引人入胜。想一想,两个自然界中随处可见的轻核结合在一起,就可以放出巨大的能量,而且还不产生任何污染物,这简直是人类理想的终极能源形势。 (本文原标题:《终于,1亿度高温!中国这个黑科技又一次震撼了世界,或是取代煤和石油的人类终极能源》) 但是,由于磁场线圈电阻的存在,使得电流增加到一定程度时,线圈的损耗会急剧增加,甚至会烧坏线圈。这个缺点差点判了托卡马克装置死刑,直到超导技术的出现,才解决这一问题。 在可控核聚变研究开始之初,世界各国都认为可控核聚变很容易实现,都在绝密的状态下开始了可控核聚变研究,他们都希望自己成为最早掌握这一先进能源技术的国家。但是,经过多次失败后,各国科学家才发现可控核聚变实在是难以实现,不得不进行国际交流。 从火把到蒸汽机,再到电气,人类历史上每一次能源革命,都导致了人类文明的革命。未来,谁能率先掌握可控核聚变技术,谁就将引领人类文明的革命。 本文为瞭望智库原创文章,原文首发于2017年7月15日,标题为《5000万度高温,烧了101秒,中国这个黑科技又一次震撼了世界!》如需转载请在文前注明来源瞭望智(zhczyj)及作者信息,否则将严格追究法律责任。 这是我们设计的中国工程聚变堆,里面有一个主机装置。这个设计象征着大鹏展翅腾飞,象征着人类追求聚变的梦想,象征中华民族腾飞的梦想。 大约在1958年前后,各国可控核聚变研究方面的交流已经变得充分,他们惊讶地发现,遇到的都是类似的问题。这意味着,研究可控核聚变,面临的不是简单的技术问题,而是理论问题,这种情况下,只有世界科学家联合起来,才能掌握可控核聚变技术。 中科院等离子体所11月12日发布消息,我国大科学装置“人造太阳”日前取得重大突破,实现加热功率超过10兆瓦,等离子体储能增加到300千焦,等离子体中心电子温度首次达到1亿度,获得的多项实验参数接近未来聚变堆稳态运行模式所需要的物理条件,朝着未来聚变堆实验运行迈出了关键一步,也为人类开发利用核聚变清洁能源奠定了重要的技术基础。在中科院SELF讲坛,中国工程院院士李建刚也曾分享过他对“人造太阳”的展望。 未来,可控核聚变终将成为现实,到那时,我们将拥有取之不尽,用之不竭的清洁能源,我们将再也不必担心化石能源枯竭问题,再也不用担心温室气体导致大气变暖问题,也不用担心目前核电的放射性问题。在可控聚变能的基础上,人类将彻底自己的生产和生活方式,我们的生活将被廉价、高效、清洁的能源驱动,快速前进。同时,聚变能将给人类太空探索提供强大的驱动引擎,让星际遨游再也不受动力的困扰,到那个时候,走出地球、殖民太空将不再是科幻小说的情节。 谈判确定一共有七方参加,欧盟占最大一块45%,其他的六方——中国、日本、美国、韩国、印度各占9%,共出资100亿欧元,要在法国Cadarache(卡达拉舍)建世界第一个真正意义上的人造太阳,叫国际热核聚变实验堆ITER。它要运行20年,即需要能够在大规模的、几十万千瓦的基础上运行很长时间。这就是要验证聚变的工程可行性。到底规模有没有这么大,这么大的规模以后行不行?这里牵扯到特别多的技术。这是中国参加的一个最大的国际合作项目,价钱是100亿欧元,其中中国占9%,也是9亿欧元,这是一个很大的数字。 总结一下,作为资源来讲,它是无限的同时又是清洁的,所以长期以来被科学家认为是未来人类终极能源之一,可以大规模生产。未来可能有20%的可再生能源,但最大规模的一块,即80%一定是靠聚变来维持的。 说起来容易做起来难。我国很多年前就开始做聚变了。托卡马克不是中国人的发明,是苏联人的发明,他们概在1989年的时候有意把一套马克装置送给中国。当时我们所长说这是一个很好的机会,因为当时我们啥都不会。于是就用400万人民币的羽绒、瓷器、中国家具换来了一个1800万卢布的装置。 太阳为人类产生了很多光和热,万物生长靠太阳。我们想要实现聚变,一个不可控因素就是氢弹。氢弹不能轻易地爆炸,要用去把它点一下,点到上亿度以后才有可能发生爆炸。 上世纪60年代末,苏联科学家阿尔齐莫维奇发布了托卡马克磁约束方案,人类第一次利用磁场约束住了超高温等离子体,让科学家们第一次看到可控核聚变的曙光。所谓托卡马克装置,英文为TOKAMAK(由俄语中的“环形”“真空”“磁”“线圈”四个单词的缩写构成),即用水平和垂直的两个线圈构成真空磁场、约束等离子体的装置。 可控核聚变国际合作项目(ITER)的目标是在欧盟建造一座可持续运行的托卡马克装置,这一装置目前正处于建造过程中。值得一提的是,这个装置虽然比东方超环规模要大,但是不论是其超导线圈技术,还是其非圆形垂直截面,都是参照的东方超环的技术。甚至可以说,东方超环是比该装置早诞生十年的原型装置。 同一时期,与李正武同期回国的科学家孙湘,在1962年初的“第一次全国电工会议”上报告了自己的研究成果,并将研究论文发表在1965年的《物理学报》上,这是我国可控核聚变研究最早公开发表的文献之一。 在核裂变反应堆开始源源不断为人类提供核电时,科学家们就开始考虑研究核聚变反应堆,并期望在不久的将来实现聚变反应堆发电,一劳永逸地解决人类的能源问题。 大约在1985年,尽管是冷战的时候,里根和戈尔巴乔夫也谈了一件象征着人类美好前景的事情——在地球上建一个人造太阳。这个人造太阳是50万千瓦,跟现在的发电站差不多。 我们想要实现的目标不只是几百万度几秒钟,我们想做得更长。难度在哪里?材料!做聚变,几乎都要用到当今地球上所有材料、技术的极致。比如说,其中要采取的材料是一种最硬的合金——钨合金。在这个空间里,我们要加上上亿的温度让它悬起来,同时还要防止冲击波。只要有冲击波的强放射,就要赶快把它拿走、抽走。这里用的大抽速是零下269度的低温棒。 我们现在正在做实验装置、参加ITER,但是希望十年以后能建造中国自己的工程堆,这样才能够验证发电。有了这个东西以后,在50年到60年之间就能商用化。 在九五的大工程的国内一百多个提议中,该提议终于胜出,然后我们就开始做这样的装置。做这个装置,第一就是要解决上亿度和零下269度的矛盾。同志到我们所里去的时候,他也问了这么一个问题。 几十年如一日,我国可控核聚变研究从未落后、从未停滞、不断超越,已经走到了国际可控核聚变研究的最前沿。未来人类必将完全掌控可控核聚变,而从目前各国可控核聚变研究的进展来看,最先掌握可控核聚变技术的国家必然是中国。 经过二三十年的努力,真正的人造太阳会冉冉升起,对中国来讲,聚变的需求比任何一个国家都急迫。 由于后来苏联解体和欧美日内讧,且各自隐瞒自身关键技术等,这个计划一直没有实质性进展。直到2003年,世界再次面临能源危机,这个项目才再次被人提起。此时的中国,国力相比1985年已经空前提高,而且对先进技术的渴望也越来越强烈。因此,我国携可控核聚变研究的多年成果和经济实力,成为最先加入这个项目的国家。 不幸的是,迄今为止,人类发明的最耐热的材料,也只能忍受数万摄氏度的温度,在一亿度以上的高温面前,一切材料都只能俯首称臣。于是,研究核聚变便归结为一个简单的问题:用什么东西约束住可控核聚变发生时的超高温物质? 但是这还不行,还不能够做到所有线,这时候我们就要做超导。什么叫超导呢?就是要把上亿度磁笼子的一团火球悬浮在-269℃的圈子里面。想想看,等于说有两个极端,一个温度在108K以上——一亿度以上,另一个温度是非常冷的,4K,也就是零下269℃。这个是非常难的。 而本次“东方超环”在全球首次实现了5000万摄氏度等离子体持续101.2秒的长时间放电,再次创造了人类可控核聚变研究的新高度。 可控核聚变国际合作项目(ITER)的目的,主要是建造一座托卡马克试验装置,让人类首次实现实验室中的可控核聚变。 本文转载自微信公众号“SELF格致论道讲坛”(ID:SELFtalks),原文首发于2018年11月12日,原标题为《中国“人造太阳”实现1亿度运行,这是可能永久解决能源问题的黑科技》,不代表瞭望智库观点。 在此之前全世界没有人做过,因此所有的东西都需要我们自己做。当时国内的经济不像现在这么好,万元熙院士带领整个团队做了整整十年,突破了很多难点,终于在2006年得到了等离子体,大概几百万度,但是它只有几秒钟时间。 其次,一旦发生聚变的时候——比如氢弹爆炸,只要它发生爆炸的时候就会有强烈的冲击波,它跟周边材料(就是悬浮起来的也不行)发生强相互作用,所以控制要非常精确,精确到零点几个毫米和零点几个毫秒以下,否则只要一偏心,它就碰到什么烧什么。 第二个例子。刚才说的上亿度的东西的第一层屏蔽叫核导,长得像多脚的怪兽一样。它有多重?一百年前的埃菲尔铁塔是7300吨,而这个有8000吨,所以这个材料要难得多。这是一种特殊的不锈钢,它首先要降到零下269度,同时它要耐强辐射,我们国家在参加ITER之前从来没有生产过。参加ITER之后,通过跟国际合作,山西太钢现在可以年产15000吨,得到了很大的发展。 首先我们需要巨大的磁场,这个磁场要比地球南北级的磁场高两万倍以上,磁场越强越容易收得住。人类之所以没有遭到来自太阳风这种粒子的损害,主要就是靠磁场把这种带电粒子无形之间屏蔽起来。 2012年,东方超环获得了超过400秒的2000万摄氏度高参数偏滤器等离子体,获得了稳定重复超过30秒的高约束等离子体放电,这改写了国际上最长时间的高温偏滤器等离子体放电和最长时间的高约束等离子体放电的纪录,标志着我国可控核聚变已经代表了国际可控核聚变研究的最高成就。 我们产生的磁笼子是用常规铜线做的,消耗了大量的能量。怎么才能不消耗能量呢?如果把温度降下来,一旦电阻等于0的话,消耗的能量顷刻之间就降到0,那么我们就非常容易地拿到了聚变能量。 60年代初,在著名物理学家、1956年回国的王承书的倡导下,我国开始建设“仿星器”装置。只是受不久后的“文革”影响,该装置没有达到试验目的,以失败告终。

本站文章于2019-10-17 12:12,互联网采集,如有侵权请发邮件联系我们,我们在第一时间删除。 转载请注明:中邦大科学装备“人制太阳”实行1亿℃高温或庖

推荐阅读



 
QQ
1279734772
微信号
wfx13341965107
咨询热线
13341965107
快3必中计划 北京pk赛车走势网址 大通彩票平台 口袋彩店平台 彩客网平台 彩客网平台 多彩彩票平台 凤凰彩票 正彩彩票平台 彩票平台邀请码